Intracellular redox status affects transplasma membrane electron transport in pulmonary arterial endothelial cells.

نویسندگان

  • Marilyn P Merker
  • Robert D Bongard
  • Nicholas J Kettenhofen
  • Yoshiyuki Okamoto
  • Christopher A Dawson
چکیده

Pulmonary arterial endothelial cells possess transplasma membrane electron transport (TPMET) systems that transfer intracellular reducing equivalents to extracellular electron acceptors. As one aspect of determining cellular mechanisms involved in one such TPMET system in pulmonary arterial endothelial cells in culture, glycolysis was inhibited by treatment with iodoacetate (IOA) or by replacing the glucose in the cell medium with 2-deoxy-D-glucose (2-DG). TPMET activity was measured as the rate of reduction of the extracellular electron acceptor polymer toluidine blue O polyacrylamide. Intracellular concentrations of NADH, NAD(+), NADPH, and NADP(+) were determined by high-performance liquid chromatography of KOH cell extracts. IOA decreased TPMET activity to 47% of control activity concomitant with a decrease in the NADH/NAD(+) ratio to 34% of the control level, without a significant change in the NADPH/NADP(+) ratio. 2-DG decreased TPMET activity to 53% of control and decreased both NADH/NAD(+) and NADPH/NADP(+) ratios to 51% and 55%, respectively, of control levels. When lactate was included in the medium along with the inhibitors, the effects of IOA and 2-DG on both TPMET activity and the NADPH/NADP(+) ratios were prevented. The results suggest that cellular redox status is a determinant of pulmonary arterial endothelial cell TPMET activity, with TPMET activity more highly correlated with the poise of the NADH/NAD(+) redox pair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ascorbate-mediated transplasma membrane electron transport in pulmonary arterial endothelial cells.

Pulmonary endothelial cells are capable of reducing certain electron acceptors at the luminal plasma membrane surface. Motivation for studying this phenomenon comes in part from the expectation that it may be important both as an endothelial antioxidant defense mechanism and in redox cycling of toxic free radicals. Pulmonary arterial endothelial cells in culture reduce the oxidized forms of thi...

متن کامل

Preferential utilization of NADPH as the endogenous electron donor for NAD(P)H:quinone oxidoreductase 1 (NQO1) in intact pulmonary arterial endothelial cells.

The goal was to determine whether endogenous cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) preferentially uses NADPH or NADH in intact pulmonary arterial endothelial cells in culture. The approach was to manipulate the redox status of the NADH/NAD(+) and NADPH/NADP(+) redox pairs in the cytosolic compartment using treatment conditions targeting glycolysis and the pentose phosphate pathway a...

متن کامل

Pulmonary reduction of an intravascular redox polymer.

Pulmonary endothelial cells in culture reduce external electron acceptors via transplasma membrane electron transport (TPMET). In studying endothelial TPMET in intact lungs, it is difficult to exclude intracellular reduction and reducing agents released by the lung. Therefore, we evaluated the role of endothelial TPMET in the reduction of a cell-impermeant redox polymer, toluidine blue O polyac...

متن کامل

Lung redox homeostasis: emerging concepts.

This symposium was organized to present some aspects of current research pertaining to lung redox function. Focuses of the symposium were on roles of pulmonary endothelial NADPH oxidase, xanthine oxidase (XO)/xanthine dehydrogenase (XDH), heme oxygenase (HO), transplasma membrane electron transport (TPMET), and the zinc binding protein metallothionein (MT) in the propagation and/or protection o...

متن کامل

Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia.

The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hypero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 282 1  شماره 

صفحات  -

تاریخ انتشار 2002